
Genetics in Ophthalmology

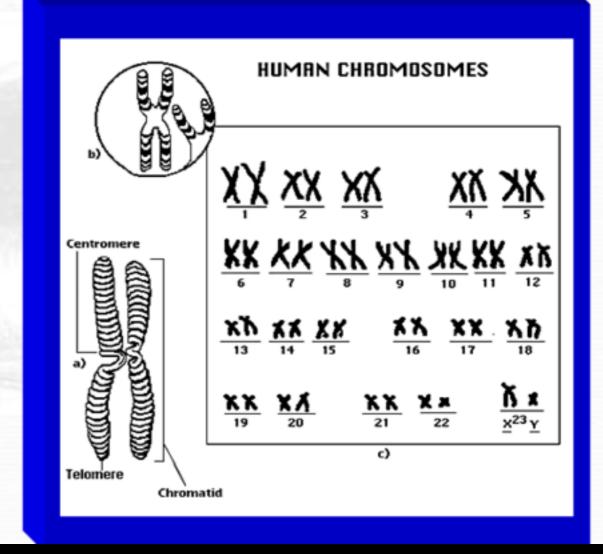
Alan C. Parent, MD, FACS

Basics of Genetics

 Gene – basic unit of genetic information. Genes determine the inherited characters.

Genes

 Genome – the collection of genetic information.


 Chromosomes – storage units of genes.

 DNA - is a nucleic acid that contains the genetic instructions specifying the biological development of all cellular forms of life

Human Genome

Most human cells contain 46 chromosomes:

- 2 sex chromosomes (X,Y):
 - XY in males.
 - XX in females.
- 22 pairs of chromosomes named autosomes.

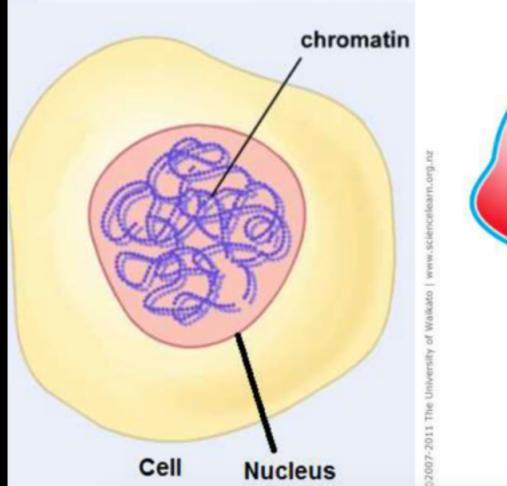
Genotype and Phenotype

- At each locus (except for sex chromosomes) there are 2 genes. These constitute the individual's genotype at the locus.
- The expression of a genotype is termed a
 phenotype. For example, hair color, weight, or
 the presence or absence of a disease.

Types of Inheritances

- Autosomal
 - Autosomal dominant
 - Autosomal recessive
- X- linked
 - X- linked dominant
 - X- linked recessive
- Mitochondrial

Mitochondrial Inheritance


- Mitochondrial inheritance is different from the others as it has nothing to do with the chromosomes of the father or the mother.
- a small amount of DNA is inside the mitochondria. if the mutation is in the mitochondrial DNA, it will be inherited only from the mother.

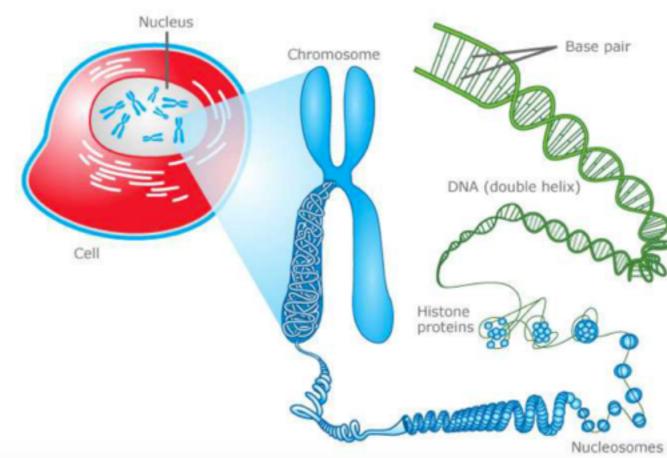
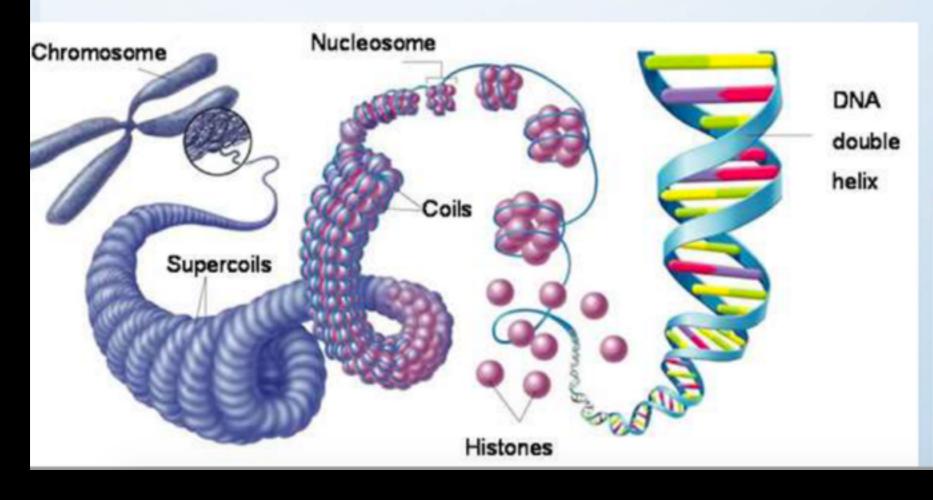
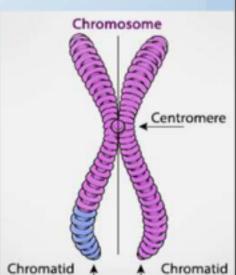
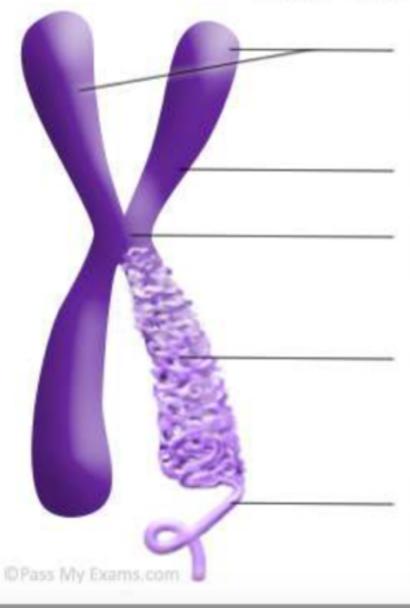

Mother affected Father affected

Table. Availability of Genetic Testing for Inherited Eye Diseases


Test/Diagnosis	Inheritance Pattern	Gene
Aniridia*	Autosomal recessive	PAX6
Bardet-Biedl syndrome ^b	Autosomal recessive	BBS1, BBS2, BBS3, BBS4, BBS5, BBS6, BBS7, BBS8, BBS9, BBS10, and BBS11
Batten disease ^c	Autosomal recessive	CLN3
Best diseased	Autosomal dominant	VMD2
Cone-rod dystrophy ^e	Autosomal dominant	CRX
Corneal dystrophy, stromale	Autosomal dominant	TGFBI
Dominant optic atrophy!	Autosomal dominant	OPA1
Juvenile open-angle glaucomae	Autosomal dominant	MYOC
Juvenile X-linked retinoschisis ^a	X-Linked	RS1
Leber congenital amaurosise	Autosomal recessive	AIPL1, CRB1, CRX, GUCY2D, RDH12, RPE65, and RPGRIP1
Leber hereditary optic neuropathyh	Mitochondrial	ND1, ND4, and ND6
Malattia leventinesed	Autosomal dominant	EFEMP1
Norrie disease	X-Linked	NDP
Pattern dystrophyd	Autosomal dominant	RDS
Primary congenital glaucoma	Autosomal recessive	CYP1B1
Primary open-angle glaucoma®	Autosomal dominant	MYOC
Rieger syndrome ^a	Autosomal recessive	FOXC1 and PITX2
Retinitis pigmentosae	Autosomal dominant	RHO, RDS, and RP1
Sorsby dystrophyd	Autosomal dominant	TIMP3
Stargardt diseased	Autosomal dominant	ELOVL4
Stargardt diseasek	Autosomal recessive	ABCA4
Usher type I ¹	Autosomal recessive	USH1B
Von Hippel-Lindau diseasem	Autosomal dominant	VHL
Retinoblastoma ⁿ	Autosomal dominant	RB1


The structure of chromosomes

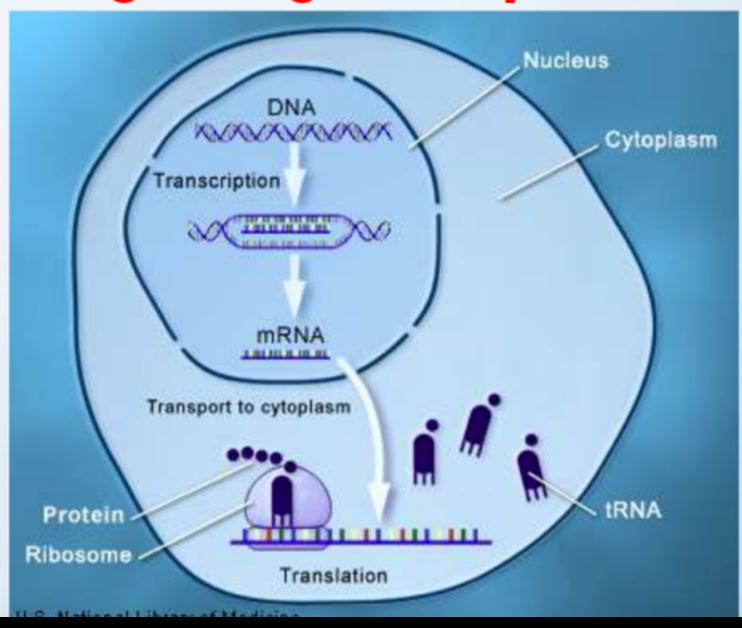


The structure of chromosomes

One Chromosome

Two Identical Chromatids

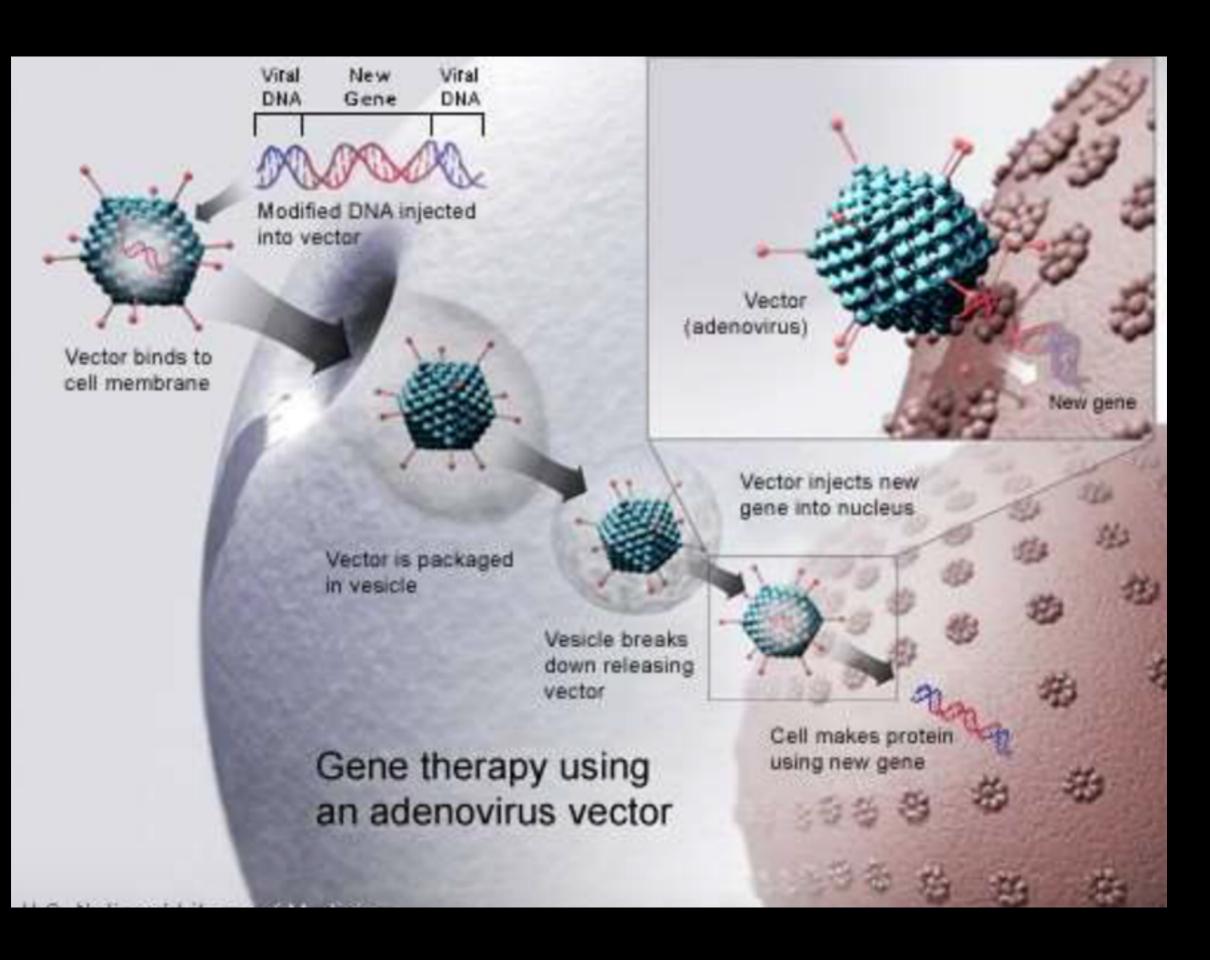
One is an exact copy of the other and each contains one DNA molecule.


p arm - short arm structure

Centromere – constricted point of the chromosome

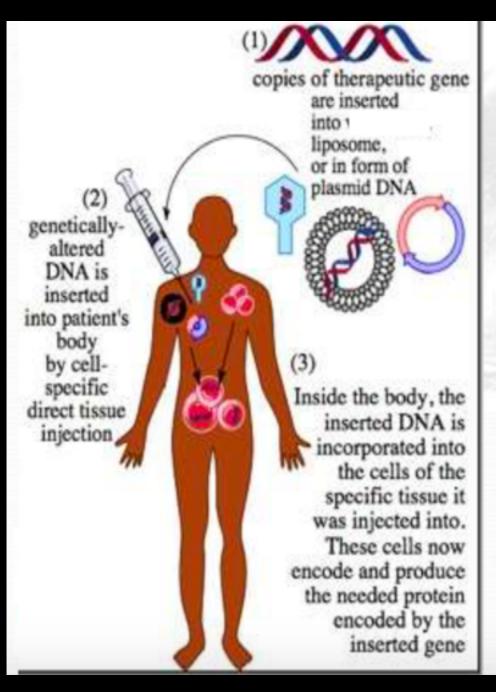
q arm - long arm structure

DNA molecule – long string like DNA molecule formed into a compact structure by proteins called histones.


Stages of gene expression

Gene therapy

- Gene therapy is an experimental technique that uses genes to treat or prevent disease by inserting a gene into a patient's cells instead of using drugs or surgery. Few approaches are:-
- Replacing a mutated gene that causes disease with a healthy copy of the gene.
- Inactivating, or "knocking out," a mutated gene that is functioning improperly.
 - Introducing a new gene into the body to help fight a disease


Pros and cons of viral vector

Pros

- Good at targeting and entering cells.
- Some viral vectors might be engineered to target specific types of cells.
- They can be modified so that they can't replicate and destroy the cell.

Cons

- Genes may be too big to fit into a certain type of virus as viruses cant "expand".
- Few may cause immune responses in patients, resulting in active infection or poor response to

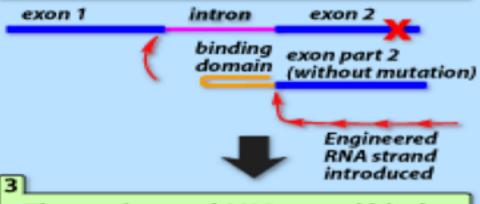
- Non-viral vectors are typically circular DNA molecules, also known as plasmids. In nature, bacteria use plasmids to transfer genes from cell to cell.
- Scientists use bacteria and plasmids to easily and efficiently store and replicate genes of interest from any organism.

- Delivering genes into a group of cells in a patient's body can be done in one of two ways.
- In vivo approach- Inject the vector into the body and specifically target affected cells.
- Ex vivo approach-
 - Isolating the desired cells from the body.
 - Culturing the cells in a Petri dish in the laboratory.
 - Delivering the genes to the cells (using one of the vector options), activating them, and making sure that the cells integrate them properly.

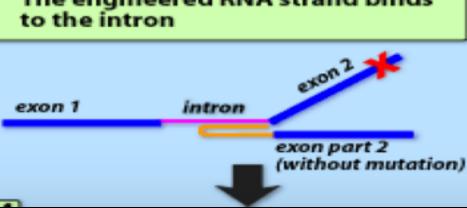
Newer advances in gene therapy

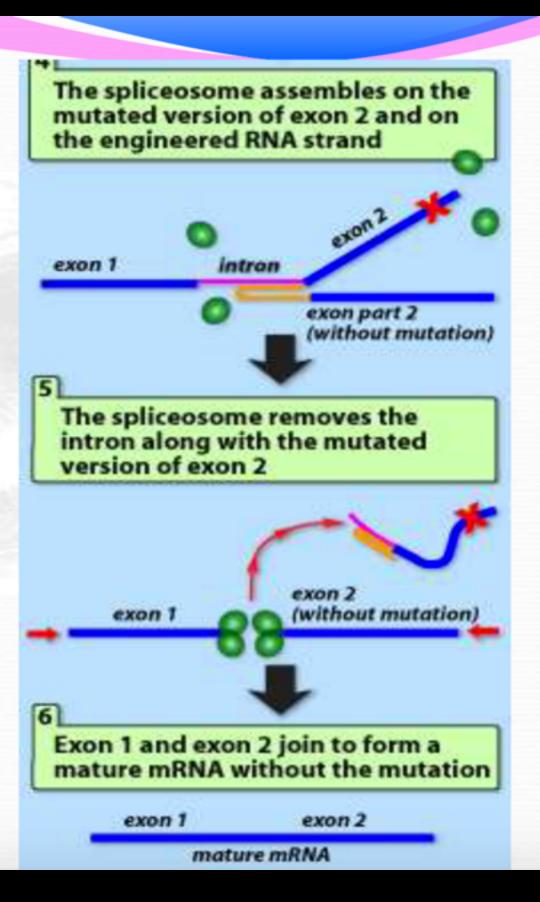
SMaRTTM

- Stands for "Spliceosome-Mediated RNA Transsplicing." This technique targets and repairs the messenger RNA (mRNA) transcripts copied from the mutated gene.
- Targets the DNA sequence of a mutated gene to prevent its transcription.



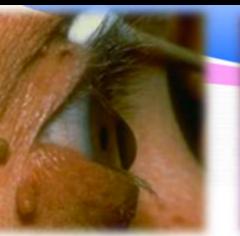
"Spliceosome Mediated RNA Trans-splicing"


An intron separates the two parts of a gene. Exon 2 of the gene has a mutation, indicated by the red "X"



An RNA strand is introduced that has been engineered to contain a corrected exon 2 and a domain that will bind to the intron

The engineered RNA strand binds to the intron


Genetic Eye Disease

Corneal dystrophies

- Corneal dystrophy is a group of rare hereditary disorders characterised by bilateral abnormal deposition of substances, including lipids and cholesterol crystals in the cornea.
- Most of the dystrophies are AD.

Name	Inheritance	Gene locus	Gene		
Superficial corneal dystrophies					
Meesmann dystrophy	AD	12q13, 17q12	KRT3, KRT12		
Reis-Bücklers corneal dystrophy	AD	5q31	TGFB1		
Gelatinous drop-like corneal dystrophy	AR	1p32	TACSTD2		
Stromal corneal dystrophies	Stromal corneal dystrophies				
Macular dystrophy	AR	16q22	CHST6		
Granular dystrophy	AD	5q31	TGFB1		
Lattice dystrophy	AD	5q31, 9q34	TGFB1, GSN (gene)		
Schnyder corneal dystrophy	AD	1p34.1–p36	UBIAD1		
Congenital stromal corneal dystrophy	AD	12q13.2	DCN		
Fleck corneal dystrophy	AD	2q35	PIP5K3		
Posterior dystrophies					
Fuchs dystrophy	AD	1p34.3,13pTel-13q12.13, 18q21.2-q21.32, 20p13-p12, 10p11.2	COL8A, SLC4A11, TCF8		
posterior polymorphous corneal dystrophy	AD	20p11.2, 1p34.3-p32.3, 10p11.2	COL8A2, TCF8		
Congenital hereditary endothelial dystrophy	AR	20p13-p12	SLC4A11		

Keratoconus

- It is a bilateral, non-inflammatory progressive corneal ectasia. Clinically, the cornea becomes progressively thin and conical, resulting in myopia, irregular astigmatism, and corneal scarring.
- A recent study⁽¹⁾ has revealed 17 different genomic loci identified in KC families by linkage mapping in various populations for susceptibility of KC.

- So far the modes of disease inheritance are dominant and recessive, but in autosomal dominant inheritance, the disease shows incomplete penetrance with variable phenotype.
- Cellular pathways (inflammatory, apoptosis) are now cited to be involved in the development of KC.⁽²⁾

Cause


 Mutations in the VSX1 gene (MIM -605020), which maps to chromosome 20p11.2.

Genes	Physiological role
VSX1	Craniofacial and ocular development[21],[22],[23],[24]
SOD1	Major cytoplasmic antioxidant enzyme that metabolizes superoxide radicals and provides a defense against oxygen toxicity (oxidative stress) [35],[36]
ZEB1	Modulating epithelial-to-mesenchymal transition (EMT)
TGFBI	It is a cytokine interacting with an extracellular matrix protein that plays a role in tissue injury and repair[29],[30]
MIR184	Expressed in the cornea and lens, 3'UTR of two target genes, INPPL1 (inositol polyphosphate phosphatase-like 1) and ITGB4 (integrin beta 4) while these two target genes are involved in corneal healing after injury ^[44]

Gene therapy

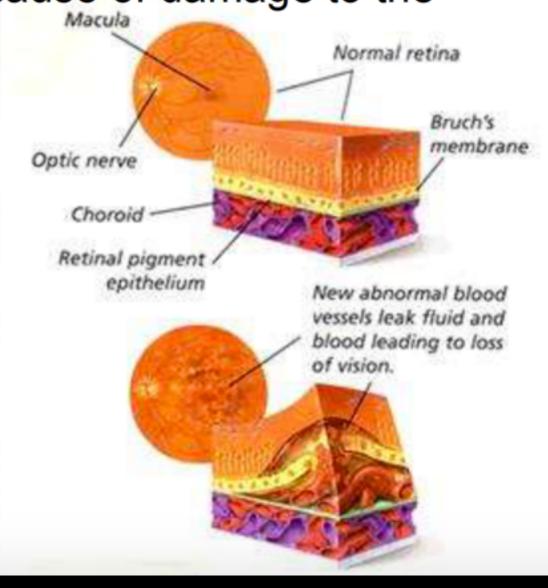
- These studies may enable prediction of genetic variant induced consequences beyond simple mapping for single nucleotide polymorphisms (SNPs).
- KC is a complex disorder and possibly involves multiple genes and various mechanisms that contribute to the clinical disease etiology.
- Certain genes such as VSX1, DOCK9, or TGFB1 may have an essential, sufficient role in the disease. They can be delivered to the cornea via viral vectors or nanoparticles under the control of a cornea-specific promoter as treatment.

GLAUCOMA

 A group of ocular disorders with multifactorial etiology united by a clinically characteristic intraocular pressureassociated optic neuropathy and visual field defect.

GENETIC CAUSE

- Myocilin was the first gene known to cause glaucoma and was discovered in 1997. (3)
- This gene on chromosome 1 makes a protein that is secreted in the trabecular meshwork (drainage angle) of the eye.
- It is most likely mode of action- damage of the trabecular meshwork, thereby impairment of the aqueous outflow.


- Several groups have shown that some individuals carry two mutations; one each in Myocilin and CYP1B1(causes congenital glaucoma)
- Congenital glaucoma is caused by 2 mutations in CYP1B1.
- The glaucoma associated with Myocilin AND CYP1B1 is more aggressive, with an earlier onset than Myocilin alone.

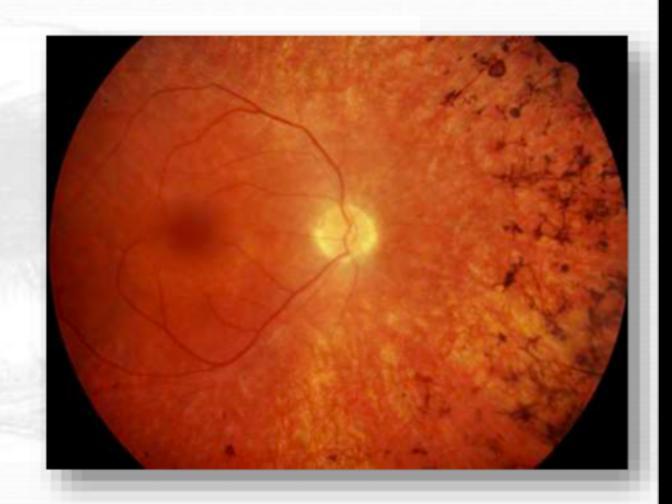
Age related macular

older adults and results in a loss of vision in the center of the visual field because of damage to the

retina.

Cause

- Nearly 20 genes and variant loci have been linked, some more strongly than others, to an increased risk of AMD.
- AMD-related single-nucleotide polymorphisms (SNPs) have been found near or within genes responsible for a variety of functions, including extracellular matrix remodelling, oxidative stress protection in the retinal mitochondria, the complement system and cholesterol metabolism.


Gene therapy in AMD

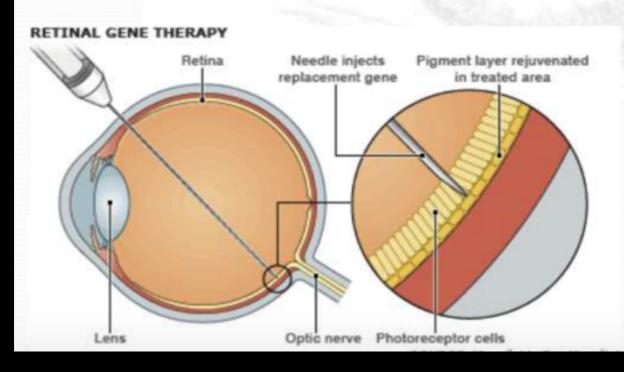
- Gene therapy using CD59 has seemed to have slowed down the progression of AMD.
- AMD is caused by an activation of membrane attack complex (MAC), which kills cells in the back of the eye,causing AMD.
- CD59 reduces the development of MAC.
- Research has proved that CD59 administered through gene therapy caused a significant reduction of uncontrolled blood vessel growth as well as dead cells that cause AMD.

- CD59 can be injected by using a virus vector for gene therapy as shown in a few studies on animal models.
- Though no clinical trials have been conducted to prove this for human patients.

RETINITIS PIGMENTOSA

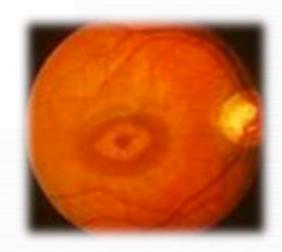
Retinitis pigmentosa (RP)
 refers to a group of X <u>linked inherited disorders</u>
 that slowly lead to
 blindness due to
 abnormalities of the
 photoreceptors (primarily
 the rods) in the retina.

Cause


 Mutations in more than 60 genes are known to cause retinitis pigmentosa.

Inheritance	Most common	cases
AD >20	RHO Gene	20-30% of all cases
AR 35 genes	USH2A Gene	10-15% of all cases
X- Linked 6 genes	RPGR and RP2 Gene	Most X-Linked RP

Genetic therapy in RP


- Two approaches have been used; the first approach is to transfer a properly functioning copy of the affected gene using adenovirus associated vector(AAV) into the retina.
- Alternatively, researchers can inactivate a mutated gene responsible for the production of a gene product that has deleterious effects on photoreceptors.

- Significant success has been achieved by using AAV to mediate transgene expression in the retinal tissue.
- Autosomal dominant RP (ADRP) is another form of RP in which AAV vectors have been shown to have a remarkable therapeutic potential. ADRP is caused by a defective rhodopsin gene product that leads to photoreceptor cells' death which eventually leads to blindness

STARGARDT DISEAS

- Also known as Fundus Flavimaculatus
- Inherited juvenile macular degeneration
- Progressive vision loss usually to the point of legal blindness.
- Starts between the ages of six and twelve years old and plateaus shortly after rapid reduction in visual acuity.

PATHOPHYSIOLOGY

- It is caused by mutations in a gene called ABCA4 also known as Atp binding cassette transporter in the visual phototransduction cycle.
- It is thought that this gene abnormality leads to an accumulation of a material called lipofuscin that may be toxic to the retinal pigment epithelium, the cells needed to sustain vision.

STEM CELL RESEARCH

 Stem cell research claims the ability to generate healthy RPE cells from human embryonic stem cells. The idea is to replace the genetically diseased RPE cells with healthy replacements. In theory, the healthy RPE cells should prevent loss of the photoreceptors, thereby preserving vision.

Thank You