What's New In ATIOLs?

Alan C. Parent, M.D., F.A.C.S. Cataract and Eye Consultants of Michigan

Agenda

- The Cataract Surgery Market
- Understanding Today's Cataract Patient
- Shifting Your Surgical Approach
- Recommending with Confidence

Cataract Procedures Are Growing¹

More Surgeons Are Implanting ATIOLs¹

An Aging Population Means Increasing Presbyopia and Cataract Prevalence

2005: 1 Billion Presbyopia Patients Worldwide¹

- Approximately 50% without spectacles or with inadequate spectacles
- Approximately 40% unable to ideally perform near tasks

2014: US Vision Statistics²

- More than 11 million Americans could improve their vision to 20/40 or better with refractive correction
- An estimated 20.5 million Americans age 40 years and older have cataracts in one or both eyes

Future Projections

- 30.1 million Americans with cataracts by 20202
- 1.4 billion presbyopia patients globally by 2020¹
- 1.8 billion presbyopia patients globally by 2050¹

Getting to Know Today's Cataract Patient

- Large, rapidly growing demographic (i.e., baby boomers)
- Educated, financially secure
- Increased life expectancy
- Longer working careers

Rate of Baby Boomers Turning 65 Yrs. Old in the U.S.

- 3.5 million per year; 10,000 per day¹
- 416 per hour; 7 per minute

Baby Boomers Retire. Pew Research Center. http://www.pewresearch.org/daily-number/baby-boomers-retire/ Published December 29, 2010.
 Accessed September 30, 2014.

Getting to Know Today's Cataract Patient

- Are unwilling to compromise active lifestyle
- Embrace demand-driven health care
- Demand high-quality vision (e.g., reading, distance, night)
- Have new requirements for intermediate vision (e.g., tablets, smart phones, etc.)

More Patients Willing to Pay for Reduced Spectacle Dependence

Recently Diagnosed Cataract Patient Survey¹

- Nearly half (47%) indicated they are willing to pay at least \$1,000 per eye
- One-fourth said "money is no object" when investing in improving their vision

Identifying Multifocal IOL Candidates

Patients who may be best served by a multifocal lens should:

- Desire reduced spectacle dependence
- Be able to achieve <0.5 D of astigmatism postop
- Fit within the available IOL diopter range
- Have no contraindicated ocular pathology

Recommendation Pearls

When recommending an ATIOL:

- Review patients' lifestyle and wants
- Explain all of their IOL options
 - Presbyopia correction
 - Astigmatism correction
 - Monofocal correction
- Educate on benefits
- Set expectations appropriately
- Make a strong clinical recommendation
 - Allow patients to manage their own finances

So what's new?

SV25T0 AcrySof IQ ReSTOR +2.5 D

SV = Sharp Vision

25 = +2.5 D add

T = Toric

0 = Zero astigmatic correction

Who is this lens for?

Aspheric Monofocal AcrySof® IQ IOL Aspheric Apodized
Diffractive Multifocal
ReSTOR® +2.5 D IOL

Aspheric Apodized
Diffractive Multifocal
ReSTOR® +3 D IOL

The ReSTOR® +2.5 Patient

- Patients with an active lifestyle that demands more intermediate (53cm/21in) and distance (4m/13ft) vision*
 - Not willing to compromise distance for a full range
- Desires more opportunity for a range of vision versus monofocal
- · Desires increased spectacle independence at 21 inches and beyond
- Patient understands that +1.00 reader may be needed for 16-20 inches (40-50cm)

^{*} Active lifestyle patients participate in activities that require intermediate and distance vision such as golf, tennis, theatre, and driving.

^{**}Compared to models SN6AD1, SN6AD3 and MN6AD1

Optic Design Differences: ReSTOR® +2.5 vs. ReSTOR® +3.0

Reduced the add power from 3.0D to 2.5D by:

Reducing diffractive steps from 9 to 7 and increasing spacing

Altered the light distribution by:

- Increasing the distance energy of the center zone from 40% to 100%
- Reducing apodized diffractive area by 18%
- Increasing the outer distance area by 6%

AcrySof® IQ ReSTOR® IOL

-2.5 D	
-2.5 D	_
S	

+2.5 D¹	Parameter	+3.0 D ¹	
SV25T0	Model number SN6AD1		
+2.5 D	ADD power @ IOL plane	+3.0 D	
+2.0 D	ADD power @ Spectacle Plane	+2.5 D	
0.94 mm	Central ring diameter	0.86 mm	
7	# Diffractive Steps	9	
8.4 mm2	Apodized Diffractive Area	10.2 mm2	
Dist: 69% Near: 18.0%	Energy distribution (3 mm IOL plane)	Dist: 59% Near: 25.5%	
-0.2μm	Asphericity	-0.1μm	

Defocus Curves^{1,2}

Simulated Retinal Images using a Badal Optometer (3 mm Pupil)¹

Distance	80cm (31in)	70cm (28in)	60cm (24in)	40cm (16in)
KZVDC VSHZO HDKCR CSRHN SVZDK NSOVOV SONOV SONOV SONOV SONOV	ReSTO	R 3.0	KZVDC VSHZO HDKCR CSRHN SVZDK NOVOZ RHSBV	
KZVDC VSHZO HDKCR CSRHN SVZDK NCVOZ RHSSOV SNROH	ReSTOR	KZVDC VSHZO HDKCR CSRHN SVZDK		
KZVDC VSHZO HDKCR CSRHK CSRHK SVCHC SVCHC	- AcrySc	of IQ		

Visual Disturbances¹

Visual Disturbances 6 Months Postoperative Following Second Eye Implantation*,1

Visual disturbance	AcrySof* IQ ReSTOR* +2.5 Model SV25T0 (n=153)	AcrySof* IQ Monofocal Model SN60WF (n=160)		
Glare/Flare				
None/Mild	75.8%	83.2%		
Moderate	20.9%	13.1%		
Severe	3.3%	3.8%		
Halos				
None/Mild	67.4%	88.8%		
Moderate	22.2%	7.5%		
Severe	10.5%	3.8%		

Patients implanted with AcrySof® IQ ReSTOR® +2.5 D IOLs experienced 3.3% severe glare.

Patients implanted with AcrySof® IQ Monofocal IOLs experienced 3.8% severe glare.

1. AcrySof* IQ ReSTOR* +2.5 Directions for use.

Patient Profiling for ReSTOR®

AcrySof® IQ ReSTOR® +2.5 D IOL Candidates

- Higher amount of intermediate (53cm) and distance (4m) activities
- Preference for range of vision but not willing to compromise sharp distance vision
- Desire increased spectacle independence from 53cm and beyond.

AcrySof® IQ ReSTOR® +3.0 D IOL Candidates

- Balance of near, intermediate, and distance activities desiring a broad range of vision
- Seek true performance at all distances from multifocal capabilities
- Increased spectacle independence for near, intermediate, and distant activities

Blending ReSTOR® +2.5 and ReSTOR® +3.01

- Bilateral ReSTOR® +2.5 D IOL with ACTIVEFOCUS™ optical design provides functional visual acuity at distance through near
- ReSTOR® +2.5 D IOL with ACTIVEFOCUS™ in dominant eye paired with ReSTOR +3.0 IOL in fellow eye provides the same excellent distance vision with approximately 2 additional lines of functional near vision

Study design: primary endpoint was non-inferiority of contralateral vs. bilateral implantation for corrected intermediate visual acuity. Secondary endpoint was non-inferiority of near vision.

Nuijts RM, Jonker SM, Kaufer RA, et al. Bilateral implantation of +2.5 D multifocal intraocular lens and contralateral implantation of +2.5 D and +3.0 D multifocal intraocular lenses: Clinical outcomes. J Cataract Refract Surg. 2016;42(2):194-202.

Conclusion

Many of today's cataract patients enjoy an active lifestyle, participating in activities that require intermediate and distance vision such as driving, golfing, shopping and playing tennis.

- The AcrySof® IQ ReSTOR® +2.5 D IOL joins the ReSTOR® family as a new multifocal option and the only IOL with an ACTIVEFOCUS™ optical design.
 - Potential to expand overall number of ReSTOR® IOL candidates
 - Allows surgeons to more confidently recommend a ReSTOR® lens that best suits the vision needs of their patient
 - Provides visual acuity over a full range but with improved distance vision
 - May be most appropriate for patients with active-lifestyles
 - Designed on a proven platform for excellent refractive outcomes

TECNIS Symfony® IOL Merges Two Complementary Enabling Technologies

Proprietary Echelette Design

Extends the depth of focus

Proprietary Achromatic Technology

Corrects chromatic aberration for enhanced image contrast¹

TECNIS® Symfony Design Characteristics^{1,2}

TECNIS® Symfony Lens Design		
Optic Design ¹	Full Diffractive Optic	
Add Power ² (at IOL Plane)	+1.75 D	
Peak Near Performance ¹	26 inches	
Central portion ¹	Intermediate	
Design Feature ¹	Achromatization	

TECNIS® Symfony IOL Directions for Use
 Gatinel D, Loicq J,. Clinically Relevant Optical Properties of Bifocal, Trifocal, and Extended Depth of Focus Intraocular Lenses. J Refract Surg. 2016; 32 (4):273-280.

- Diffractive technology has been associated with multifocal IOLs, but it can be used in different ways
- Other industries use diffractive lenses (cameras, telescopes, microscopes) to optimize optical performance under constrained conditions

Cornea

All corneas have a similar amount of chromatic aberration

Lens with Achromatic Technology

Proprietary Achromatic
Technology is optimized to
counteract the chromatic
aberration of the cornea

Cornea+ Lens with Achromatic Technology

The net result is reduced chromatic aberration

TECNIS Symfony® IOL provides continuous, high-quality vision at all distances

BINOCULAR DEFOCUS CURVE AT 6 MONTHS

TECNIS Symfony® IOL delivers:

- Sustained mean visual acuity of 20/25 or better through 1.5 D of defocus
- Increase of 1.0 D range of vision throughout the defocus curve compared to a monofocal

TECNIS Symfony® IOL delivers contrast sensitivity with no clinically significant difference compared to a monofocal IOL

MTF50 FAR 5MM IN ACE EYE MODEL'

TECNIS Symfony® IOL maintained image contrast comparable to that of the TECNIS® Monofocal IOL (at 5 mm aperture).

Significant loss in contrast sensitivity has been linked to increased incidence of crashes and increased risk of falls^{3,4}

TECNIS Symfony® IOL delivers excellent uncorrected visual acuity at all distances1

UNCORRECTED BINOCULAR VISUAL ACUITY AT 6 MONTHS POSTOPERATIVE

TECNIS Symfony® IOL actively corrects chromatic aberration¹

- TECNIS material minimizes chromatic aberration
- In addition the ACCEL™ Achromatic Technology of TECNIS Symfony® IOL actively corrects the chromatic aberration of the eye¹
- AcrySof® IQ ReSTOR® IOLs induce chromatic aberration of the eye¹

TECNIS Symfony® IOL delivers contrast sensitivity with no clinically significant difference compared to a monofocal IOL

MTF50 FAR 5MM IN ACE EYE MODEL¹

TECNIS Symfony® IOL maintained image contrast comparable to that of the TECNIS® Monofocal IOL (at 5 mm aperture).

Significant loss in contrast sensitivity has been linked to increased incidence of crashes and increased risk of falls^{3,4}

TECNIS Symfony® IOL maintains image quality throughout 0.75 mm of decentration¹

These calculations were performed with theoretical calculations.¹
In the US Clinical Trial there was no report of decentration at 6 months.²

Less than 3% of patients spontaneously reported incidence of severe night vision symptoms

TECNIS Symfony® IOL demonstrated a low incidence of halo and glare

TECNIS Symfony® IOL pupil independence enables optimal performance in all lighting conditions^{1,2}

MTF LOSS WHEN THE PUPIL OPENS FROM 3mm TO 5mm

Distance MTF at 50 c/mm in white light

Less MTF loss provides better contrast under low-light conditions

85% of TECNIS Symfony® IOL patients wore glasses none or a little bit of the time*

FREQUENCY OF GLASSES / CONTACTS WEAR DURING LAST 7 DAYS, ASKED AT 6 MONTH VISIT

Central Portion 100% Dedicated to Distance Vision

Optical Profiles*

efficiency calculated. Optical profile of the ReSTOR +2.5 D, model SV25T0 is based on its design profile.

*Scale to mm from microns (µ) for readability.

† Surface profile of the TECNIS Symfony 28.0 D IOL was measured using Bruker Contour white light interferometer on the posterior surface and the diffraction

Questions?

- 1. TECNIS Symfony DFU
- 2. DOF2016CT0025 TECNIS Symfony Toric Results
- 3. SC20160OTH004 Preclinical Evaluation of Tolerance to Astigmatism with an ERV IOL
- 4. DOF2016CT0023 TECNIS Symfony® IOL Tolerance to decentration.
- 5. DOF2015CT0018 MTF of TECNIS Symfony IOL, and other lens models
- 6. Data on File 150_Sensar not associated with glistenings Literature analysis. Abbott Medical Optics, Inc., 2013.
- 7. Christiansen G, et al. Glistenings in the AcrySof® intraocular lens: Pilot study. *JCRS* 2001; 27:728-733. REF2014MLT0005.
- 8. Colin J, et al. Incidence of glistenings with the latest generation of yellow-tinted hydrophobic acrylic intraocular lenses. JCRS 2012; 38:1140-1146. REF2014MLT0006.
- 9. Gunenc U, et al. Effects on visual function of glistenings and folding marks in AcrySof® intraocular lenses. *JCRS* 2001; 27:1611-1614. REF2014MLT0011.
- 10. Nagata M, et al. Clinical evaluation of the transparency of hydrophobic acrylic intraocular lens optics. *JCRS* 2010; 36:2056-2060. REF2015CT0080.
- 11. Bousquet M, PhD, Health Canada. Intraocular lenses and the development of glistenings. Canadian Adverse Reaction Newsletter 2013. REF2015CT0254.
- 12. Miyata A, Yaguchi S. Equilibrium water content and glistenings in acrylic intraocular lenses. *JCRS* 2004; 30:1768-1772. REF2014OTH0032.
- 13. van der Mooren, et al. Explanted multifocal intraocular lenses. JCRS 2015; 41:873-877. REF2015OTH0117.
- 14. DOF2016CT0024 Concerto Study Report
- 15. DOF2015CT0028 Symfony Harmony Observational Study